\(\int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx\) [838]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 112 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=-\frac {2 A \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}} \]

[Out]

2*A*sin(d*x+c)/b^2/d/(b*cos(d*x+c))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/
2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/b^2/d/(b*cos(d*x+c))^(1/2)-2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x
+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b^3/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {16, 2827, 2716, 2721, 2719, 2720} \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=-\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d \sqrt {b \cos (c+d x)}} \]

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(b*Cos[c + d*x])^(5/2),x]

[Out]

(-2*A*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^3*d*Sqrt[Cos[c + d*x]]) + (2*B*Sqrt[Cos[c + d*x]]*Ell
ipticF[(c + d*x)/2, 2])/(b^2*d*Sqrt[b*Cos[c + d*x]]) + (2*A*Sin[c + d*x])/(b^2*d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {A+B \cos (c+d x)}{(b \cos (c+d x))^{3/2}} \, dx}{b} \\ & = \frac {A \int \frac {1}{(b \cos (c+d x))^{3/2}} \, dx}{b}+\frac {B \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx}{b^2} \\ & = \frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}-\frac {A \int \sqrt {b \cos (c+d x)} \, dx}{b^3}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b^2 \sqrt {b \cos (c+d x)}} \\ & = \frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}-\frac {\left (A \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{b^3 \sqrt {\cos (c+d x)}} \\ & = -\frac {2 A \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.68 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (-A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+A \sin (c+d x)\right )}{b^2 d \sqrt {b \cos (c+d x)}} \]

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(-(A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + A*Sin
[c + d*x]))/(b^2*d*Sqrt[b*Cos[c + d*x]])

Maple [A] (verified)

Time = 4.66 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.94

method result size
default \(\frac {2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{b^{2} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(217\)
parts \(-\frac {2 A \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{b^{2} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b^{2} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(344\)

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/b^2*(-2*sin(1/2*d*x+1/2*c)^4*b+b*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*
x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.54 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=\frac {-i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} A \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} A \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} A \sin \left (d x + c\right )}{b^{3} d \cos \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*sqrt(b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*sqr
t(b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*A*sqrt(b)*cos(d*x + c)
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*A*sqrt(b)*cos(d
*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*sqrt(b*cos(d*x +
 c))*A*sin(d*x + c))/(b^3*d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c))^(5/2), x)

Giac [F]

\[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c))^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{5/2}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(b*cos(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(b*cos(c + d*x))^(5/2), x)